Total Synthesis of (+)-Conolidine by the Gold(I)-Catalyzed Cascade Cyclization of a Conjugated Enyne

Saori Naoe, Yusuke Yoshida, Shinya Oishi, Nobutaka Fujii,* and Hiroaki Ohno*
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

S Supporting Information

ABSTRACT: A total synthesis of $(+)$-conolidine has been achieved via the gold (I)-catalyzed cascade cyclization of a conjugated enyne. Remarkably, this strategy allowed for the simultaneous formation of the indole ring and the ethylidene-substituted piperidine moiety of (+)-conolidine under homogeneous gold catalysis in an enantioselective manner ($88-91 \%$ ee).

Conolidine (1), which belongs to the C5-nor stemmadenine family of alkaloids, was first isolated from Tabernaemonta divaricata by Kam et al. in 2004 (Figure 1). ${ }^{1}$

$(+)$-conolidine (1)

stemmadenine

Figure 1. Stemmadenine-based alkaloids.

This group managed to isolate only $0.0013 \mathrm{~g} / \mathrm{kg}$ of conolidine from the stem bark of this small flowering plant. Since Micalizio and co-workers accomplished the first asymmetric total synthesis of conolidine (1) in 2011, there has been considerable interest in its unique analgesic activity, which differs from that of many common opioids, including morphine. ${ }^{2}$ Although several efficient methods have been reported for the synthesis of C5-nor stemmadenine-type indoles, ${ }^{2-4}$ the development of a diversity-oriented route suitable for evaluating the structureactivity relationships of these compounds is still highly desired.

Homogeneous gold catalysis has attracted considerable attention because of the strong π-acidity of gold, as well as its potential to stabilize cationic reaction intermediates. ${ }^{5}$ The versatile reactivity of gold catalysts has allowed for the design of several eloquent cascade reactions for the direct step- and atom-economical synthesis of complex molecules. ${ }^{6}$ Today, homogeneous gold catalysis is recognized as one of the most effective strategies for the electrophilic activation of alkynes for the synthesis of natural products. ${ }^{6 f}$

We recently reported the gold(I)-catalyzed bis-cyclization of conjugated diynes $2\left(\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{NuH}=\mathrm{OH}\right)$ as an efficient strategy for the construction of fused indoles 3 and 4 (Scheme 1). ${ }^{7}$ In this reaction, the initial indole formation occurred via a 5 -endo-dig cyclization, which was followed by a 7 -endo-dig

Scheme 1. Gold(I)-Catalyzed Intramolecular Consecutive Cyclizations of a Conjugated Diyne (from previous work)

cyclization to give fused indole 3 as the major product. On the basis of this reaction, we designed a strategy for the synthesis of (+)-conolidine (1) (Scheme 2, strategy I). It was envisaged that known conolidine precursor $7^{2,4}$ could be prepared by the gold(I)-catalyzed cascade cyclization of conjugated diyne 10. In this sense, the bis-cyclization reaction would allow for the formation of a fused indole (paths a and b), which would be followed by the third cyclization to give the piperidine moiety. One of the potential issues with this strategy would be controlling the regioselectivity of the second cyclization step. In particular, the 6-exo-dig cyclization (path b) would need to be favored over the 7 -endo-dig pathway (path b^{\prime}) to allow for the introduction of the oxygen atom at the appropriate carbon of the product. We also designed a second strategy (strategy II) using a conjugated enyne 11 bearing a silyl enol ether. ${ }^{8}$ Notably, this strategy would avoid the need to control the regioselectivity of the second cyclization described in strategy I

[^0]Scheme 2. Retrosynthetic Analysis of Conolidine Based on the Gold(I)-Catalyzed Cascade Reaction of Conjugated Alkynes

$\left[\mathrm{Au}^{+}\right] \|$gold(I)-catalyzed cascade reaction $\|\left[\mathrm{Au}^{+}\right]$

by introducing the oxygen atom of the conolidine as a silyl ether. It was also envisaged that the nucleophilicity of the enol ether would be increased following the formation of the indole, leaving it better equipped to promote the subsequent formation of the piperidine ring. Furthermore, the use of a chiral auxiliary (in strategy I) or chiral gold complex would allow for the asymmetric induction of these key steps. Both of these strategies involve the use of readily accessible synthons 1216 and can therefore be considered as diversity-oriented convergent syntheses. Herein, we report the total synthesis of (+)-conolidine (1) based on the catalytic asymmetric cyclization of enol ether-type substrate 11 (strategy II).

Strategy I. We initially conducted a series of model experiments using conjugated diynes $2 \mathbf{a}-\mathbf{c}$ to evaluate the possibility of controlling the regioselectivity in strategy I (Scheme 3). The reaction of 2a bearing a phenylglycinol moiety gave desired isomer $\mathbf{4 a}$ as a minor product (29:71 4a:3a ratio). In contrast, substrate $2 \mathbf{b}$ bearing a vicinal phenyl group and substrate 2c bearing a carboxylic acid preferentially afforded the corresponding 6-exo-products (4:3 ratio from 71:29 to 80:20). On the basis of these results, we prepared the corresponding alcohol and carboxylic acid substrates, 10a and 10b, respectively, as the most suitable candidates for the synthesis of conolidine.

Our initial efforts toward the preparation and subsequent gold(I)-catalyzed cyclization of conjugated diynes 10a and 10b are shown in Scheme 4. The alkylation of tosylamide 17^{9} with

Scheme 3. Model Experiment for Control of the Regioselectivity in the Second Cyclization

${ }^{a}$ The erythro isomer of (\pm)-2b was used.
Scheme 4. Unsuccessful Attempts at the Gold(I)-Catalyzed Cyclization of Conjugated Diynes 10a and 10b (strategy I)

(\pm)-10b
+EtOH
$(2$ equiv $)$
complex
mixture

1-bromobut-2-yne (18) gave diyne 19. The iodination of the terminal alkyne moiety in 19 with NIS and AgNO_{3}, followed by the subsequent Cadiot-Chodkiewicz coupling ${ }^{10}$ of the resulting iodoalkyne with $\mathbf{1 3} \mathbf{a}$ or $\mathbf{1 3 b}$, gave the amino alcoholand amino acid-type substrates (\pm)-10a and 10b (after hydrolysis), respectively. Unfortunately, however, the subsequent reaction of $\mathbf{1 0 a}$ with $\mathrm{PrAuCl} / \mathrm{AgOTf}(10 \mathrm{~mol} \%)$ and EtOH (2 equiv) in 1,2 -DCE at $50^{\circ} \mathrm{C}$ for 2 h gave a complex mixture of unidentified products. In contrast, the reaction of 10b under the same conditions led to the formation of biscyclization products $\mathbf{2 0 b}$ and 20b' ${ }^{\prime}$ with good regioselectivity for the former of these two products ($90: 10 \mathbf{2 0 b} \mathbf{2 0} \mathbf{b}^{\prime}$). It is noteworthy, however, that these compounds were formed in low yields ($<31 \%$) because of their poor stability. Disappointingly, all of our other attempts to promote the formation of the piperidine using $\mathbf{1 0 b}$ and $\mathbf{2 0 b} / \mathbf{2 0} \mathbf{b}^{\prime}$ resulted in failure, most likely because of the poor nucleophilicity of the enol ether moiety of 20b bearing an electron-withdrawing group. On the
basis of these results, we discarded strategy I and focused our efforts on strategy II using conjugated enynes 11a and 11b.

Strategy II. Conjugated enynes 11a and 11b bearing different silyl enol ether moieties were prepared according to the route shown in Scheme 5. The alkylation of tosylamide

Scheme 5. Preparation and Gold-Catalyzed Cyclization of Conjugated Enynes 11a and 11b

21^{11} with ethyl 4-bromobutanoate (22) gave ester 23, which was reduced with DIBAL to give the corresponding aldehyde. The subsequent 1,2 -addition of lithium (trimethylsilyl)acetylide (15) to this aldehyde, followed by the removal of the TMS group with TBAF, afforded terminal alkyne 25 in excellent yield. The Sonogashira coupling reaction of alkyne 25 with oiodoaniline (16) provided alkynylaniline 26 in 90% yield. The oxidation of 26 with MnO_{2} gave corresponding ketone 27 in 71% yield, which was treated with TIPSOTf or TBSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to give conjugated enyne-type silyl enol ethers 11a and 11b in 75 and 81% yields, respectively. It is noteworthy that the E and Z isomers ${ }^{12}$ of $\mathbf{1 1}$ could be separated, as necessary, by column chromatography over silica gel followed by PTLC (see the Supporting Information).

We then investigated the gold(I)-catalyzed cascade reaction of enol ether-type conjugated enynes 11a and 11b (Table 1). The treatment of enyne 11a with $\mathrm{L1Au}(\mathrm{MeCN}) \mathrm{SbF}_{6}(5 \mathrm{~mol}$ \%) (Figure 2) in toluene- d_{8} at rt afforded the desired product, 9 (16%), as well as the two monocyclization products, $\mathbf{2 8}^{13}$ (34\%) and 29 (14%). To drive the reaction to completion, we investigated the use of an additive as a proton source as well as a silyl scavenger. Fortunately, the addition of $\mathrm{H}_{2} \mathrm{O}^{4}$ improved the yields of 9 to 38% (entry 2). In contrast, the use of MeOH was less efficient (entry 3). The use of an IPr ligand was found to be unsuitable for this reaction (entry 4). Similarly, several other experiments using $\mathrm{NaBARF}^{8 \mathrm{~h}}$ (Figure 2) as the counteranion (entry 5), $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as a solvent (entry 6), or TBS ether 11b as a substrate (entry 7) did not improve the yield.

We then proceeded to investigate the enantioselective gold(I)-catalyzed cascade reaction of the conjugated enyne

Table 1. Optimization of the Reaction Conditions ${ }^{a}$

entry	ligand	additive	R	time (h)	yield (\%) ${ }^{\text {b }}$		
					9	28	29
1	L1	-	TIPS (11a)	24	16	34	14
2	L1	$\mathrm{H}_{2} \mathrm{O}$	TIPS (11a)	24	38	-	2
3	L1	MeOH	TIPS (11a)	19	29	-	2
4	IPr	$\mathrm{H}_{2} \mathrm{O}$	TIPS (11a)	24	3	45	10
5	$\mathbf{L 1}^{\text {c }}$	$\mathrm{H}_{2} \mathrm{O}$	TIPS (11a)	24	15	5	45
6^{d}	L1	$\mathrm{H}_{2} \mathrm{O}$	TIPS (11a)	24	16	-	43
7	L1	$\mathrm{H}_{2} \mathrm{O}$	TBS (11b)	24	33	-	-

${ }^{a}$ Unless otherwise noted, all of these reactions were conducted using 11a (79:21 Z:E) or 11b (71:29 Z:E) with L1Au(MeCN) SbF_{6} (5 mol $\%)$ or $\operatorname{IPrAuCl}(5 \mathrm{~mol} \%) / \mathrm{AgSbF}_{6}(5 \mathrm{~mol} \%)$ in toluene $-d_{8}(0.2 \mathrm{M})$ at rt in the presence of an additive (1.5 equiv). ${ }^{b} \mathrm{NMR}$ yields were evaluated using mesitylene as an internal standard. ${ }^{c}$ Using $\mathbf{L 1 A u C l} /$ NaBARF. ${ }^{d}$ Using $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as a solvent instead of toluene- d_{8}.

Figure 2. Ligands and cocatalysts screened in this study.
Table 2. Enantioselective Gold(I)-Catalyzed Cyclization ${ }^{a}$

entry	$\begin{gathered} Z: E \\ (11 \mathbf{a}) \end{gathered}$	catalyst	time (h)	yield of 9 $(\%)^{b}$	$\begin{gathered} \% \mathrm{ee}^{c} \\ {[(S)-9]} \end{gathered}$
1	53:47	$\begin{aligned} & \text { (R)-DTBM- } \\ & \text { SEGPHOS }^{\text {SEGuCl })_{2} /} \\ & \text { AgSbF }_{6} \end{aligned}$	24	$\mathrm{ND}^{\text {d,e }}$	-
2	53:47	$\begin{aligned} & \text { (R)-MeO-DTBM- } \\ & \operatorname{BIPHEP}(\mathrm{AuCl})_{2} / \mathrm{AgSbF}_{6} \end{aligned}$	19	13	89
3^{f}	53:47	$\begin{aligned} & \text { (R)-MeO-DTBM- } \\ & \operatorname{BIPHEP}(\mathrm{AuCl})_{2} / \mathrm{AgSbF}_{6} \end{aligned}$	19	~ 10	76
4	E only	(R)-MeO-DTBM$\operatorname{BIPHEP}(\mathrm{AuCl})_{2} / \mathrm{AgSbF}_{6}$	20	ND^{e}	-
5	Z only	$\begin{aligned} & \text { (R)-MeO-DTBM- } \\ & \operatorname{BIPHEP}(\mathrm{AuCl})_{2} / \mathrm{AgSbF}_{6} \end{aligned}$	17	32	88
6^{8}	83:17	$\begin{aligned} & \text { (R)-MeO-DTBM- } \\ & \operatorname{BIPHEP}(\mathrm{AuCl})_{2} / \mathrm{AgSbF}_{6} \end{aligned}$	14	18	91

${ }^{a}$ Unless otherwise noted, these reactions were conducted using 11a in toluene $(0.2 \mathrm{M})$ at rt in the presence of $\mathrm{H}_{2} \mathrm{O}$ (1.5 equiv) with a catalyst loading of $5 \mathrm{~mol} \%$ (for the bimetallic gold complex) or 10 $\mathrm{mol} \%$ (for AgSbF_{6}). ${ }^{b}$ Isolated yields. ${ }^{c}$ Determined by chiral HPLC. ${ }^{d}$ Ketone 29 was obtained as the major product. ${ }^{e}$ Not detected. ${ }^{f}$ The catalyst loading was increased to 10 and $20 \mathrm{~mol} \%^{g}{ }^{g}$ Using $\mathrm{H}_{2} \mathrm{O}(1.0$ equiv).

11a (Table 2). On the basis of a related study reported by Toste and co-workers involving the asymmetric carbocyclization of a silyl enol ether, ${ }^{8 h}$ we investigated the use of biarylphosphine-type dinuclear chiral gold complexes to affect this reaction (Figure 2). The treatment of conjugated enyne 11a with (R)-DTBM-SEGPHOS $(\mathrm{AuCl})_{2}(5 \mathrm{~mol} \%) / \mathrm{AgSbF}_{6}$ ($10 \mathrm{~mol} \%$) in the presence of $\mathrm{H}_{2} \mathrm{O}$ (1.5 equiv) resulted in the formation of undesired ketone 29 as the major product (entry
1). The use of (R)-MeO-DTBM-BIPHEP gave desired product (S) -9 in 13% yield and 89% ee (entry 2). An increase in catalyst loading ($10 \mathrm{~mol} \%$ for the bimetallic gold complex) led to a slight decrease in the yield to 10%, as well as a decrease in ee to 76% (entry 3). Expecting that the sterically less hindered Z isomer has better reactivity, we examined the reaction of both isomers, (Z) - and (E)-11a. Interestingly, the use of (Z)-11a led to an improvement in the yield of (S)-9 to 32% (entry 5), whereas the reaction of (E)-11a failed to afford the desired product (entry 4). Taken together, these results suggested that it was possible to generate desired product 9 only from the Z isomer of 11a when a E / Z mixture of 11a was used as the substrate (entries 2 and 3). The use of 11a in conjunction with a decreased loading of $\mathrm{H}_{2} \mathrm{O}$ (1.0 equiv) led to an improvement in the ee to 91%, although the yield dropped to 18% (entry 6).

Finally, we investigated the conversion of bis-cyclization product (S)-9 (91% ee) to (+)-conolidine (1). The treatment of (S) -9 with Na /naphthalene resulted in the cleavage of the Ts protecting group to give known conolidine precursor 7 in 60\% yield (Scheme 6). According to the procedure reported by

Scheme 6. Total Synthesis of (+)-Conolidine

Micalizio and co-workers, ${ }^{2}$ we obtained (+)-conolidine (1) in 34% yield and 84% ee. The spectroscopic and specific optical rotation data for the synthetic conolidine were identical to those reported in the literature. ${ }^{1,2}$

In conclusion, we have achieved the total synthesis of (+)-conolidine based on the gold(I)-catalyzed cascade cyclization of a conjugated enyne. This study has shown that the feasibility of catalytic asymmetric reactions involving chiral gold(I) complexes for the construction of stemmadenine-type scaffolds.

EXPERIMENTAL SECTION

General Methods. For open column chromatography, silica gel or NH_{2} silica gel was employed. Thin layer chromatography was performed on a TLC silica gel $60 \mathrm{~F}_{254}$ or NH_{2} silica gel $60 \mathrm{~F}_{254}$ plate (layer thickness of 0.25 mm), which were developed using standard visualizing agents: UV fluorescence (254 nm) and anisaldehyde with heating. Melting points were measured by a hot stage melting point apparatus (uncorrected). In ${ }^{1} \mathrm{H}$ NMR spectra, chemical shifts are reported in δ (parts per million) relative to TMS as an internal standard. In ${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts are referenced to the residual solvent signal. ${ }^{1} \mathrm{H}$ NMR spectra are tabulated as follows: chemical shift, multiplicity (b, broad; s, singlet; d, doublet; t , triplet; q , quartet; m , multiplet), number of protons, and coupling constant(s).

Compounds 16, 18, 22, and (R)-DTBM-SEGPHOS $(\mathrm{AuCl})_{2}$ were obtained commercially and used without further purification. Known compounds S1, ${ }^{14} \mathbf{S 4},^{15} \mathbf{S 7},{ }^{16} \mathbf{1 7},{ }^{9} \quad \mathbf{2 1},{ }^{11}$ and (R)-MeO-BIPHES$(\mathrm{AuCl})_{2}{ }^{17,18}$ were prepared according to the methods described in the literature. Structures of $\mathbf{S 1} \mathbf{- S} 9$ are shown in Schemes S1-S3.

Preparation of Starting Materials. (R)-2-Phenyl-2-(\{2-[(trimethylsilyl)ethynyl]phenyl\}amino)ethan-1-ol (S2). The coupling of S1 and trimethylsilylacetylene was conducted according to the reported method ${ }^{19}$ as follows. To a stirred suspension of $\mathbf{S 1}(1.42 \mathrm{~g}$, $4.86 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(112 \mathrm{mg}, 0.29 \mathrm{mmol})$, and $\mathrm{CuI}(55.6 \mathrm{mg}$,
0.29 mmol) in dry 1,4-dioxane (10 mL) under argon were added diisopropylamine ($3.4 \mathrm{~mL}, 24.2 \mathrm{mmol}$), trimethylsilylacetylene (0.7 $\mathrm{mL}, 5.06 \mathrm{mmol})$, and tri $($ tert-butyl) phosphine $(0.2 \mathrm{~mL}, 0.85 \mathrm{mmol})$. After being stirred at $50^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with EtOAc and filtered through a short pad of silica gel. The filtrate was concentrated in vacuo, and the residue was chromatographed on silica gel ($5: 1$ hexane: EtOAc) to afford $\mathbf{S 2}(976 \mathrm{mg}, 65 \%)$ as amber oil: $[\alpha]_{\mathrm{D}}^{29}+242\left(c 0.51, \mathrm{CHCl}_{3}\right)$; IR (neat) $3393(\mathrm{OH}), 2143(\mathrm{C} \equiv \mathrm{C})$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.30(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80-$ $3.83(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.96-4.00(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.56-4.57(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.52-$ $5.53(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.58(\mathrm{~m}, 1 \mathrm{H}), 7.00-$ $7.04(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.0 (3C), 59.3, 67.3, 100.7, 101.8, 108.0, 110.9, 116.6, 126.5 (2C), 127.6, 128.7 (2C), 129.9, 131.7, 139.7, 148.4; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NOSi}\left(\mathrm{MH}^{+}\right) 310.1622$, found 310.1620 .
(R)-2-[(2-Ethynylphenyl)amino]-2-phenylethan-1-ol (S3). The desilylation of $\mathbf{S} 2$ was conducted according to the reported method ${ }^{20}$ as follows. $\mathrm{K}_{2} \mathrm{CO}_{3}(1.08 \mathrm{~g}, 8.0 \mathrm{mmol})$ was added to the solution of $\mathbf{S} \mathbf{2}$ ($804 \mathrm{mg}, 2.60 \mathrm{mmol}$) in $\mathrm{MeOH}(26 \mathrm{~mL})$. After being stirred at rt for 1 h , the mixture was diluted with EtOAc. The organic layer was separated, washed with water and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel (5:1 hexane:EtOAc) to afford S3 ($445 \mathrm{mg}, 72 \%$) as pale amber powder: $\mathrm{mp} 79{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}+240\left(c\right.$ 1.06, CHCl_{3}); IR (neat) 3401 $(\mathrm{OH}), 3253(\mathrm{C} \equiv \mathrm{CH}), 2089(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.66(\mathrm{dd}, J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.87(\mathrm{~m}, 1 \mathrm{H})$, $3.97-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.48(\mathrm{br} \mathrm{m}$, $1 \mathrm{H}), 6.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.61(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.06(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 59.4,67.3,80.6,83.3,106.9,111.1,116.8,126.6$ (2C), 127.7, 128.9 (2C), 130.2, 132.6, 139.6, 148.4; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}\left(\mathrm{MH}^{+}\right)$238.1226, found 238.1232.
(R)-2-Phenyl-2-\{[2-(phenylbuta-1,3-diyn-1-yl)phenyl]amino\}-ethan-1-ol (2a). The coupling of S3 and ethynylbenzene was conducted according to the reported method ${ }^{21}$ as follows. A mixture of S3 ($432 \mathrm{mg}, 1.82 \mathrm{mmol}$), ethynylbenzene $(1.0 \mathrm{~mL}, 9.11 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(36.3 \mathrm{mg}, 0.18 \mathrm{mmol})$, and piperidine $(0.5 \mathrm{~mL}, 5.06$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was stirred in open atmospheric air at rt for 5 h . The reaction mixture was concentrated in vacuo, and the residue was chromatographed on silica gel (5:1 hexane:EtOAc) to afford 2a ($349 \mathrm{mg}, 57 \%$) as amber oil: $[\alpha]_{\mathrm{D}}^{26}+470\left(c \quad 1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $3391(\mathrm{OH}), 2208(\mathrm{C} \equiv \mathrm{C}), 2140(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.71-1.73(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.04(\mathrm{~m}$, $1 \mathrm{H}), 4.60-4.62(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.47(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60-6.62(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.33-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.56-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 59.4,67.2,74.0,78.5,79.7,83.0,106.5,111.3,117.0,121.8$, 126.6 (2C), 127.7, 128.4 (2C), 128.8 (2C), 129.1, 130.7, 132.4 (2C), 133.4, 139.4, 149.4; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}\left(\mathrm{MH}^{+}\right)$ 338.1539, found 338.1537.
(\pm)-(1R,2S)-2-[(2-Bromophenyl)amino]-1,2-diphenylethan-1-ol $[(\pm)-S 5]$. The reaction of 2-bromoiodobenzene and (\pm)-S4 was conducted according to the reported method ${ }^{14}$ as follows. A mixture of 2-bromoiodobenzene ($0.9 \mathrm{~mL}, 7.01 \mathrm{mmol}$), (\pm)-S4 ($1.72 \mathrm{~g}, 8.06$ $\mathrm{mmol}), \mathrm{NaOH}(600 \mathrm{mg}, 15.0 \mathrm{mmol})$, and $\mathrm{CuI}(35.7 \mathrm{mg}, 0.19 \mathrm{mmol})$ was stirred under argon at $90^{\circ} \mathrm{C}$ for 13 h . The reaction mixture was diluted with EtOAc , washed water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (10:1 hexane:EtOAc) to afford (\pm)-S5 ($2.06 \mathrm{~g}, 80 \%$) as pale amber powder: mp $100{ }^{\circ} \mathrm{C}$; IR (neat) $3398(\mathrm{OH}), 1321(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.37-2.39(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.67-4.69(\mathrm{~m}, 1 \mathrm{H})$, $5.06-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.16(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.12(\mathrm{~m}, 4 \mathrm{H})$, $7.23-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 64.4,78.0,110.5,112.8,118.0,126.5$ (2C), 127.1 (2C), 127.7, 128.0, 128.2, 128.3 (2C), 128.6 (2C), 132.2, 139.6, 140.4, 143.9. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrNO}: \mathrm{C}, 65.23$; H, 4.93; N, 3.80. Found: C, 65.48; H, 4.89; N, 3.79.
(\pm)-(1R,2S)-1,2-Diphenyl-2-(\{2-[(trimethylsilyl)ethynyl]phenyl\}-amino)ethan-1-ol $[(\pm)-S 6]$. According to the procedure described for
the preparation of $\mathbf{S 2},(\pm)-\mathbf{S 5}(2.95 \mathrm{~g}, 8.01 \mathrm{mmol})$ was converted to (\pm)-S6 ($2.72 \mathrm{~g}, 88 \%$): column chromatography, silica gel (10:1 hexane:EtOAc); dark brown oil; IR (neat) 3298 (OH), 2140 (C 三C), $1252(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.31(\mathrm{~s}, 9 \mathrm{H}), 2.30-2.31$ (br m, 1H), 4.73-4.74 (br m, 1H), 5.10-5.11 (br m, 1H), 5.57-5.58 (br m, 1H), $6.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.99$ $(\mathrm{m}, 1 \mathrm{H}), 7.09-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.0(3 \mathrm{C}), 63.2,76.9,100.2,101.7,108.0,110.8,116.5$, 126.3 (2C), 127.4, 127.6 (2C), 127.7, 127.96 (2C), 128.02 (2C), 129.7, 132.0, 137.9, 139.7, 147.8; HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NOSi}$ $\left(\mathrm{MH}^{+}\right)$386.1935, found 386.1927.
(\pm)-(1R,2S)-2-[(2-Ethynylphenyl)amino]-1,2-diphenylethan-1-ol $[(\pm)-13 a]$. According to the procedure described for the preparation of S3, (\pm)-S6 ($1.44 \mathrm{~g}, 3.74 \mathrm{mmol}$) was converted into (\pm)-13a (852 mg , 73%): column chromatography, silica gel ($1: 1$ to $1: 2$ hexane: CHCl_{3}); amber oil; IR (neat) 3396 (OH), 3292 ($\mathrm{C} \equiv \mathrm{CH}$), 2094 ($\mathrm{C} \equiv \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.54-2.55(\mathrm{brm}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H})$, 4.70-4.71 (br m, 1H), 5.02-5.03 (br m, 1H), 5.44-5.45 (br m, 1H), $6.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 1 \mathrm{H})$, 7.06-7.08 (m, 4H), 7.17-7.28 (m, 7H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 63.1,77.2,80.6,83.1,107.0,111.1,116.7,126.6$ (2C), $127.55,127.63$ (2C), 128.0, 128.1 (2C), 128.2 (2C), 130.1, 132.4, 138.3, 139.5, 148.2; HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}\left(\mathrm{MH}^{+}\right)$ 314.1539, found 314.1535.
(\pm)-(1R,2S)-1,2-Diphenyl-2-\{[2-(phenylbuta-1,3-diyn-1-yl)phenyl]-amino\}ethan-1-ol $[(\pm)-2 b]$. According to the procedure described for the preparation of $\mathbf{2 a},(\pm)-\mathbf{1 3 a}(430 \mathrm{mg}, 1.37 \mathrm{mmol})$ was converted into $(\pm) \mathbf{- 2 b}(337 \mathrm{mg}, 59 \%)$: column chromatography, silica gel (1:1 hexane/ CHCl_{3} to CHCl_{3} only); brown powder; mp $122-124^{\circ} \mathrm{C}$; IR (neat) $3401(\mathrm{OH}), 2209(\mathrm{C} \equiv \mathrm{C}), 2141(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43-2.43$ (br m, 1H), 4.72-4.73 (br m, 1H), 5.05$5.06(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.45-5.46(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H})$, $7.26-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 63.4,74.1,77.5,78.5,79.9,82.9,106.6$, 111.2, 116.9, 122.0, 126.6 (2C), 127.6 (2C), 127.8, 128.2, 128.4 (2C), 128.5 (2C), 128.6 (2C), 129.2, 130.7, 132.4 (2C), 132.9, 138.5, 139.2, 149.3; HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{MH}^{+}\right) 414.1852$, found 414.1860.

Ethyl 2-Phenyl-2-(\{2-[(trimethylsilyl)ethynyl]phenyl\}amino)acetate $[(\pm)$-S8]. To a stirred suspension of (\pm)-S7 $(2.59 \mathrm{~g}, 6.78$ $\mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(119 \mathrm{mg}, 0.17 \mathrm{mmol})$, and $\mathrm{CuI}(32.3 \mathrm{mg}, 0.17$ mmol) in THF (14 mL) under argon were added trimethylsilylacetylene $(1.0 \mathrm{~mL}, 7.46 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.3 \mathrm{~mL}, 33.9 \mathrm{mmol})$. After being stirred at rt for 3 h , the reaction mixture was diluted with EtOAc and filtered through a short pad of silica gel. The filtrate was concentrated in vacuo, and the residue was chromatographed on silica gel ($3: 1$ hexane: CHCl_{3}) to afford (\pm)-S8 $(2.10 \mathrm{~g}, 88 \%)$ as amber oil: IR (neat) $2145(\mathrm{C} \equiv \mathrm{C}), 1736(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.31(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.13-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.26$ $(\mathrm{m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-6.05(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.59(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00(3 \mathrm{C}), 14.0,60.4,61.7,100.8,108.1,101.5,110.3$, $116.8,127.0$ (2C), 128.2, 128.7 (2C), 129.8, 131.8, 137.4, 147.2, 171.0; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 352.1733$, found 352.1726.

Ethyl 2-[(2-Ethynylphenyl)amino]-2-phenylacetate [(\pm)-13b]. According to the procedure described for the preparation of S3, (\pm)-S8 ($5.27 \mathrm{~g}, 15.0 \mathrm{mmol}$) was converted into $(\pm)-\mathbf{1 3 b}(2.99 \mathrm{~g}$, 71%): column chromatography, silica gel ($20: 1$ hexane:EtOAc). The product was recrystallized from CHCl_{3} and hexane: white powder; mp $100{ }^{\circ} \mathrm{C}$; IR (neat) $3264(\mathrm{C} \equiv \mathrm{CH}), 2095(\mathrm{C} \equiv \mathrm{C}), 1723(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 4.15$ $(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-6.04(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (ddd, $J=7.4,7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.0,60.3,61.9,80.3,83.2,107.1,110.5,117.0,127.1$ (2C), 128.3, 128.8 (2C), 130.1, 132.6, 137.3, 147.3, 171.2. Anal. Calcd for
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 77.40; H, 6.13; N, 5.01. Found: C, 77.36; H, 6.11; N, 5.00.

Ethyl 2-\{[2-(Hepta-1,3-diyn-1-yl)phenyl]amino\}-2-phenylacetate [(\pm)-S9]. According to the procedure described for the preparation of 2a, $(\pm) \mathbf{- 1 3 b}(836 \mathrm{mg}, 3.0 \mathrm{mmol})$ was converted into S9 $(621 \mathrm{mg}$, 60%): column chromatography, silica gel (10:1 hexane:EtOAc); brown powder; mp $83-84^{\circ} \mathrm{C}$; IR (neat) $2236(\mathrm{C} \equiv \mathrm{C}), 2139(\mathrm{C} \equiv \mathrm{C}), 1733$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.23$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{qt}, J=7.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.14-4.27(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-6.00(\mathrm{br} \mathrm{m}$, $1 \mathrm{H}), 6.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.59(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.04(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,14.0,21.7,21.8,60.4,61.9,65.2,71.2,80.3,86.0$, 107.1, 110.6, 117.1, 127.1 (2C), 128.3, 128.8 (2C), 130.2, 133.3, 137.2, 148.1, 171.0; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$346.1802, found 346.1804.

2-\{[2-(Hepta-1,3-diyn-1-yl)phenyl]amino\}-2-phenylacetic acid $[(\pm)-2 c]$. To a stirred suspension of $(\pm)-\mathrm{S} 9(86.9 \mathrm{mg}, 0.25 \mathrm{mmol})$ in EtOH $(5 \mathrm{~mL})$ was added THF until (\pm)-S9 dissolved $(\sim 2 \mathrm{~mL})$, and 0.4 N aqueous $\mathrm{NaOH}(19 \mathrm{~mL})$ was added to the reaction mixture. After being stirred at rt for 40 min , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, 1 N aqueous HCl , and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane to afford (\pm)-2c $(43.3 \mathrm{mg}, 54 \%)$: white solid; mp $164-166{ }^{\circ} \mathrm{C}$; IR (neat) 3394 (OH), 2238 (C 三C), 2147 $(\mathrm{C} \equiv \mathrm{C}), 1709(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{qt}, J=7.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.14(\mathrm{~s}, 1 \mathrm{H}), 6.30-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.63(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.08(\mathrm{~m}$, $1 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.5,21.68,21.74,60.2,65.1,71.0,80.4,86.2,107.3,110.6$, 117.6, 127.2 (2C), 128.8, 129.1 (2C), 130.3, 133.4, 136.4, 147.8, 175.8; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right) 318.1489$, found 318.1485.
N-(But-2-yn-1-yl)-N-(but-3-yn-1-yl)-4-methylbenzenesulfonamide (19). A mixture of $17(4.47 \mathrm{~g}, 20.0 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(16.3 \mathrm{~g}$, $50.0 \mathrm{mmol})$ in dry DMF (100 mL) was stirred in open atmospheric air at $0{ }^{\circ} \mathrm{C}$. After the mixture had been stirred at the same temperature for $0.5 \mathrm{~h}, 1$-bromobut-2-yne (18) ($2.7 \mathrm{~mL}, 29.8 \mathrm{mmol}$) was added to the mixture. The mixture was stirred for 0.5 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with water and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel ($5: 1$ hexane:EtOAc) to afford $19(5.33 \mathrm{~g}, 97 \%)$ as colorless oil: IR (neat) $3288(\mathrm{C} \equiv \mathrm{CH}), 2224(\mathrm{C} \equiv \mathrm{C}), 2120(\mathrm{C} \equiv \mathrm{C}), 1343(\mathrm{~S}=\mathrm{O})$, $1156(\mathrm{~S}=\mathrm{O})$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.58(\mathrm{t}, J=2.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.01(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{td}, J=7.4,2.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 3.2, 18.9, 21.4, 37.7, 45.3, 70.1, 71.7, 80.8, 81.7, 127.6 (2C), 129.3 (2C), 135.9, 143.3; HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$ 276.1058, found 276.1059.

N-(But-2-yn-1-yl)-N-[6-(2-\{[(1R,2S)-2-hydroxy-1,2-diphenylethyl]-amino\}phenyl)hexa-3,5-diyn-1-yl]-4-methylbenzenesulfonamide $[(\pm)-10 a]$. A mixture of $19(1.10 \mathrm{~g}, 4.0 \mathrm{mmol}), \mathrm{AgNO}_{3}(203 \mathrm{mg}, 1.20$ $\mathrm{mmol})$, and NIS $(1.26 \mathrm{~g}, 5.60 \mathrm{mmol})$ in acetone $(100 \mathrm{~mL})$ was stirred in open atmospheric air at rt in the dark. After being stirred at rt for 1 h , the mixture was concentrated in vacuo. The residue was diluted with CHCl_{3}, washed with water and brine, dried over MgSO_{4}, and concentrated in vacuo. This crude iodide 12 was used for the next reaction without further purification. According to the reported method, ${ }^{22}$ the copper-mediated coupling of $(\pm)-13 a$ and 12 was conducted as follows. 12, $(\pm)-13 \mathrm{a}(0.63 \mathrm{~g}, 2.02 \mathrm{mmol})$, and CuCl $(60.0 \mathrm{mg}, 0.60 \mathrm{mmol})$ in piperidine $(7.0 \mathrm{~mL})$ were stirred at rt under argon for 3 h . The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (10:1 hexane:EtOAc) to afford (\pm)-10a [0.31 g, 19% based on $(\pm)-13 \mathrm{a}$] as a pale amber amorphous material: IR (neat) $3396(\mathrm{OH}), 2230(\mathrm{C} \equiv \mathrm{C}), 2214(\mathrm{C} \equiv \mathrm{C}), 1327(\mathrm{~S}=\mathrm{O}), 1157$ $(\mathrm{S}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.58(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 4.14-4.15(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 4.69-4.70(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.48-5.49(\mathrm{brm}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 9 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.3,20.3$, 21.4, 37.9, 45.2, 63.1, 67.0, 71.7, 72.5, 77.2, 79.8, 81.8, 81.9, 106.3, 111.1, 116.7, 126.5 (2C), 127.55, 127.58 (2C), 127.7 (2C), 128.0, 128.15 (2C), 128.22 (2C), 129.4 (2C), 130.4, 132.8, 135.6, 138.3, 139.3, 143.5, 149.3; HRMS (FAB) calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$ 587.2368, found 587.2363 .

Ethyl 2-\{[2-(6-\{[N-(But-2-yn-1-yl)-4-methylphenyl]sulfonamido\}-hexa-1,3-diyn-1-yl)phenyl]amino\}-2-phenylacetate [(土)-S10)]. According to the procedure described for the preparation of $(\pm)-10 a$, $(\pm)-\mathbf{1 3 b}(12.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ was converted to $(\pm)-\mathbf{S 1 0}(0.80 \mathrm{~g}, 73 \%)$ by the reaction with 12 in the presence of $\mathrm{CuCl}(59.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ in piperidine $(7 \mathrm{~mL})$ at rt for 4 h : column chromatography, silica gel (3:1 hexane:EtOAc); yellow oil; IR (neat) 2226 ($\mathrm{C} \equiv \mathrm{C}$), 2146 ($\mathrm{C} \equiv$ C), $1735(\mathrm{C}=\mathrm{O}), 1328(\mathrm{~S}=\mathrm{O}), 1158(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 2.71-2.74(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.42(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.27(\mathrm{~m}, 4 \mathrm{H})$, $5.09(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57-6.60(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 6 \mathrm{H})$, $7.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.3,13.9,20.3,21.4,38.0,45.2,60.3,61.9,66.8,71.8$, $72.2,79.8,81.8,81.9,106.6,110.6,117.1,127.0$ (2C), 127.7 (2C), 128.3, 128.8 (2C), 129.4 (2C), 130.4, 133.3, 135.8, 137.1, 143.4, 148.2, 170.9; HRMS (FAB) calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$553.2161, found 553.2155.

2-\{[2-(6-\{[N-(But-2-yn-1-yl)-4-methylphenyl]sulfonamido\}hexa-1,3-diyn-1-yl)phenyl]amino\}-2-phenylacetic Acid [(\pm)-10b]. THF $(\sim 2 \mathrm{~mL})$ was added to the mixture of (\pm)-S10 $(0.15 \mathrm{~g}, 0.27 \mathrm{mmol})$ and $0.4 \mathrm{~N} \mathrm{NaOH}(2 \mathrm{~mL})$ in $\mathrm{EtOH}(4 \mathrm{~mL})$. After being stirred at rt for 0.5 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, 1 N HCl , and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford $(\pm)-10 \mathrm{~b}(0.14 \mathrm{~g}, 95 \%)$ as brown powder: mp 64-65 ${ }^{\circ} \mathrm{C}$; IR (neat) $3386(\mathrm{OH}), 2309(\mathrm{C} \equiv \mathrm{C}), 2145(\mathrm{C} \equiv \mathrm{C}), 1715$ ($\mathrm{C}=$ $\mathrm{O}), 1326(\mathrm{~S}=\mathrm{O}), 1157(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60$ (br s, 3H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.72(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.39-3.41(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, $4.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.31-6.32(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.61-6.63(\mathrm{~m}$, $1 \mathrm{H}), 7.06-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.50-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.3,20.3$, 21.5, 37.9, 45.1, 60.2, 66.8, 71.8, 72.2, 79.8, 81.9, 82.1, 106.6, 110.7, $117.4,127.2$ (2C), 127.7 (2C), 128.6, 129.0 (2C), 129.4 (2C), 130.5, 133.5, 135.7, 136.5, 143.5, 148.0, 176.0; HRMS (FAB) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$525.1848, found 525.1849.

Ethyl 4-\{[N-(But-2-yn-1-yl)-4-methylphenyl]sulfonamido\}butanoate (23). The coupling of 21 and ethyl 4-bromobutanoate (22) was conducted according to the reported method ${ }^{23}$ as follows. A mixture of $21(448 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{NaH}(48.0 \mathrm{mg}, 2.4 \mathrm{mmol})$ in dry DMF (5 mL) was stirred at rt for 0.5 h under argon. 4Bromobutanoate (22) ($0.17 \mathrm{~mL}, 2.4 \mathrm{mmol}$) was added to the reaction mixture. The mixture was stirred for 3 h . The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture diluted with EtOAc, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel ($10: 1$ hexane:EtOAc) to afford $23(0.68 \mathrm{~g}, 100 \%)$ as pale yellow oil: IR (neat) $1730(\mathrm{C}=\mathrm{O})$, $1345(\mathrm{~S}=\mathrm{O}), 1157(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{tt}, J=6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.40-2.41(\mathrm{~m}, 5 \mathrm{H}), 3.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.2,14.2,21.5,22.7,31.1,36.8$, 45.5, 60.5, 71.6, 81.6, 127.8 (2С), 129.2 (2С), 136.0, 143.2, 173.1; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 338.1426$, found 338.1423.

N-(But-2-yn-1-yl)-N-[4-hydroxy-6-(trimethylsilyl)hex-5-yn-1-yl]-4methylbenzenesulfonamide (24). Alkynylation was conducted according to the reported method ${ }^{24}$ as follows. To a mixture of 23 $(2.70 \mathrm{~g}, 8.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added 1 M DIBAL in toluene ($9 \mathrm{~mL}, 8.7 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under argon. After the mixture had been stirred at the same temperature for 1 h , the reaction was quenched with MeOH (1 equiv) and $\mathrm{H}_{2} \mathrm{O}$ (6 equiv) at $-78^{\circ} \mathrm{C}$, and
the resulting slurry was allowed to warm to rt. It was then filtered through MgSO_{4} and Celite, and the solvent was evaporated under reduced pressure to leave aldehyde $\mathbf{1 4}$ as a yellow liquid. This crude material was used for the next reaction without further purification. To a mixture of trimethylsilylacetylene ($1 \mathrm{~mL}, 7.20 \mathrm{mmol}$) in dry THF $(36 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added n-BuLi in THF (2.6 M solution in $n-\mathrm{BuLi} ; 3.1 \mathrm{~mL}, 8.0 \mathrm{mmol}$) dropwise, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h to afford a solution of lithium trimethylsilylacetylide (15), to which the solution of 14 in THF (18 mL) was slowly added. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was warmed to rt , the reaction quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on silica gel ($3: 1$ hexane:EtOAc) to afford 24 $(2.81 \mathrm{~g}, 90 \%)$ as colorless oil: IR (neat) $3511(\mathrm{OH}), 2223(\mathrm{C} \equiv \mathrm{C})$, $2170(\mathrm{C} \equiv \mathrm{C}), 1345(\mathrm{~S}=\mathrm{O}), 1158(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.17(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.77(\mathrm{~m}, 4 \mathrm{H})$, 2.03-2.04 (br m, 1H), 2.42 (s, 3H), 3.20-3.21 (br m, 2H), 4.06 (q, J $=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.43(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.73$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.0$ (3C), 3.4, 21.7, 23.1, 34.4, 36.6, 45.8, 62.5, 71.7, 81.7, 89.9, 106.4, 128.0 (2C), 129.4 (2C), 136.1, 143.3; HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+}\right)$392.1716, found 392.1710.

N-(But-2-yn-1-yl)-N-(4-hydroxyhex-5-yn-1-yl)-4-methylbenzenesulfonamide (25). To a mixture of $24(4.48 \mathrm{~g}, 11.4 \mathrm{mmol})$ in dry THF $(23 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added 1 M TBAF in THF $(11.5 \mathrm{~mL}$, 11.4 mmol) dropwise, and the mixture was stirred at rt for 0.7 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (5:1 hexane:EtOAc) to afford 25 ($3.42 \mathrm{~g}, 94 \%$) as pale amber oil: IR (neat) $3516(\mathrm{OH}), 3284(\mathrm{C} \equiv \mathrm{H}), 2225$ (C $\equiv \mathrm{C})$, 2114 ($\mathrm{C} \equiv \mathrm{C}$), 1327 ($\mathrm{S}=\mathrm{O}$), 1156 ($\mathrm{S}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.72-1.81(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 2.48-2.48(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-4.06(\mathrm{br} \mathrm{m}$, 2H), 4.45 (br s, 1H), 7.29 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.2 .21 .4,22.8,34.1,36.5,45.6$, 61.6, 71.5, 73.1, 81.6, 84.5, 127.8 (2C), 129.2 (2C), 135.8, 143.2; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$320.1320, found 320.1318.

N-[6-(2-Aminophenyl)-4-hydroxyhex-5-yn-1-yl]-N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (26). $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~mL}, 12.0 \mathrm{mmol})$ was added to a stirred mixture of $25(0.97 \mathrm{~g}, 3.02 \mathrm{mmol}), 2$-iodoaniline (16) $(0.66 \mathrm{~g}, 3.03 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(53.1 \mathrm{mg}, 0.08 \mathrm{mmol})$, and $\mathrm{CuI}(28.8 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ under argon. After being stirred at rt for 1.5 h , the mixture was diluted with EtOAc, washed with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (2:1 hexane:EtOAc) to afford $26(1.11 \mathrm{~g}, 90 \%)$ as colorless oil: IR (neat) $3379(\mathrm{OH}), 2301(\mathrm{C} \equiv \mathrm{C}), 2218(\mathrm{C} \equiv \mathrm{C}), 1328(\mathrm{~S}=\mathrm{O}), 1306$ $(\mathrm{NH}), 1156(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52(\mathrm{t}, J=2.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.78-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{q}, ~ J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.70-4.72(\mathrm{br}$ $\mathrm{m}, 1 \mathrm{H}), 6.65-6.68(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.2,21.4$, 23.2, 34.6, 36.7, 45.8, 62.5, 71.6, 81.6, 81.7, 95.1, 107.1, 114.3, 117.8, 127.8 (2C), 129.2 (2C), 129.8, 132.2, 135.8, 143.2, 147.9; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$411.1742, found 411.1742.

N-[6-(2-Aminophenyl)-4-oxohex-5-yn-1-yl]-N-(but-2-yn-1-yl)-4methylbenzenesulfonamide (27). According to the reported method, ${ }^{25}$ oxidation of 26 was conducted as follows. A mixture of $26(421 \mathrm{mg}, 1.03 \mathrm{mmol})$ and $\mathrm{MnO}_{2}(882 \mathrm{mg}, 10.3 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was stirred under reflux for 0.5 h . The reaction mixture was cooled to rt, filtered through Celite, and concentrated in vacuo. The residue was chromatographed on silica gel (5:1 hexane:EtOAc) to afford $27(297 \mathrm{mg}, 71 \%)$ as orange amber oil: IR (neat) $2300(\mathrm{C} \equiv \mathrm{C}), 2180(\mathrm{C} \equiv \mathrm{C}), 1658(\mathrm{C}=\mathrm{O}), 1342(\mathrm{~S}=\mathrm{O})$, $1330(\mathrm{NH}), 1156(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.54(\mathrm{t}, \mathrm{J}=$ $2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.99(\mathrm{tt}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 6.68-6.69(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.36-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.2,21.4,21.9,37.0,42.1,45.5,71.5,81.7,89.1,94.1$, 103.4, 114.5, 117.8, 127.8 (2C), 129.2 (2C), 132.5, 133.8, 135.7, 143.3, 105.3, 186.5; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 409.1586$, found 409.1590 .
(E)- and (Z)-N-\{6-(2-Aminophenyl)-4-[(triisopropylsilyl)oxy]hex-3-en-5-yn-1-yl\}-N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (11a). TIPSOTf ($0.9 \mathrm{~mL}, 3.24 \mathrm{mmol}$) was added dropwise to a mixture of $27(883 \mathrm{mg}, 2.16 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}, 6.84 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon, and the mixture was stirred for 2 h . The mixture allowed to warm slowly to rt. The mixture was diluted with EtOAc , washed with 3 N HCl twice, water, aqueous saturated NaHCO_{3}, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (5:1 hexane:EtOAc) to afford 11a ($921 \mathrm{mg}, 75 \%, 85: 15 \mathrm{Z}:$, determined by ${ }^{1} \mathrm{H}$ NMR). ${ }^{12}$ Both products were isolated by column chromatography on silica gel followed by PTLC (silica gel) with a 10:1 hexane/ EtOAc solvent. Compound (Z)-11a (more polar isomer): amber oil; IR (neat) $2193(\mathrm{C} \equiv \mathrm{C}), 1616(\mathrm{SiOC}=\mathrm{C}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 1.27-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{t}, J=$ $2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.53(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.09(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67-6.69(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.2,12.9$ (3C), 18.0 (6C), 21.5, 24.4, 36.7, 45.3, 71.8, 81.4, 83.7, 92.3, 107.1, 114.3, 114.8, 117.8, 127.8 (2C), 129.2 (2C), 129.9, 131.9, 134.1, 136.1, 143.1, 148.0; HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+}\right)$565.2920, found 565.2919. Compound (E)11a (less polar isomer): amber oil; IR (neat) 2191 ($\mathrm{C} \equiv \mathrm{C}$), 1616 $(\mathrm{SiOC}=\mathrm{C}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $18 \mathrm{H}), 1.27(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.54$ $(\mathrm{m}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 5.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.70(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.14(\mathrm{~m}, 1 \mathrm{H})$, $7.26-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.2,12.5$ (3C), 17.9 (6C), 21.5, 27.4, 37.0, 45.9, 71.8, 81.6, 89.1, 89.8, 107.0, 114.4, 114.6, 117.7, 127.8 (2C), 129.2 (2C), 130.0, 132.1, 135.8, 136.0, 143.1, 148.0; HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+}\right) 565.2920$, found 565.2913 .
(E)- and (Z)-N-\{6-(2-Aminophenyl)-4-[(tert-butyldimethylsilyl)-oxy]hex-3-en-5-yn-1-yl\}-N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (11b). TBSOTf ($0.2 \mathrm{~mL}, 0.81 \mathrm{mmol}$) was added dropwise to a mixture of $27(166 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.81 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon, and the mixture was stirred at rt for 1 h . The mixture was diluted with EtOAc, washed with 1 N HCl , water, aqueous saturated NaHCO_{3}, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed on silica gel (5:1 hexane:EtOAc) to afford $\mathbf{1 1 b}(171 \mathrm{mg}, 81 \%, 73: 27$ $Z: E$, determined by ${ }^{1} \mathrm{H}$ NMR). ${ }^{12}$ Both products were isolated by column chromatography on silica gel followed by PTLC (silica gel) with a 10:1 hexane/EtOAc solvent. Compound (Z)-11b (more polar isomer): reddish amber oil; IR (neat) $2193(\mathrm{C} \equiv \mathrm{C}), 1616$ (SiOC= C); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.26(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{t}$, $J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{dt}, J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.13(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67-6.69(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 3 \mathrm{H})$, 7.73 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.1$ (2C), 3.2, 18.1, 21.5, 24.3, 25.7 (3C), 36.7, 45.3, 71.7, 81.5, 84.3, 92.1, 107.0, 114.3, 115.2, 117.8, 127.8 (2C), 129.2 (2C), 129.9, 131.9, 133.8, 136.0, 143.1, 147.9; HRMS (FAB) calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+}\right)$ 523.2451, found 523.2458. Compound (E)-11b (less polar isomer): reddish amber oil; IR (neat) 2193 ($\mathrm{C} \equiv \mathrm{C}$), 1616 ($\mathrm{SiOC}=\mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.23(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{t}, J=2.3$ $\mathrm{Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dt}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.27(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.4(2 \mathrm{C})$, 3.2, 18.1, 21.5, 25.6 (3C), 27.3, 37.0, 45.9, 71.8, 81.6, 89.4, 89.7, 107.0, $114.4,115.1,117.7,127.8$ (2C), 129.2 (2C), 130.1, 132.1, 135.4, 136.0, 143.1, 148.0; HRMS (FAB) calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+}\right)$ 523.2451 , found 523.2454 .

Gold(I)-Catalyzed Cascade Reactions. General Procedure A: Synthesis of (R)-2,5-Diphenyl-4,5-dihydro[1,4]oxazepino[4,5-a]indole (3a) and (R, Z)-1-Benzylidene-4-phenyl-3,4-dihydro-1H-[1,4]-oxazino[4,3-a]indole (4a). A screw-cap test tube was charged with 2a ($33.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{IPrAuCl}(3.1 \mathrm{mg}, 5.0 \mu \mathrm{~mol}$), and AgOTf (1.3 $\mathrm{mg}, 5.0 \mu \mathrm{~mol})$. Dry 1,2-DCE (1.5 mL) was added to the screw-cap test tube. After being stirred at $50^{\circ} \mathrm{C}$ for 5 h , the reaction mixture was concentrated in vacuo and chromatographed on NH_{2} silica gel (2:1 hexane: CHCl_{3}), and the collected solid was rinsed with hexane to afford an inseparable mixture of $\mathbf{3 a}$ and $\mathbf{4 a}(29.0 \mathrm{mg}, 86 \%, 71: 29 \mathbf{3 a}: 4 \mathrm{a}$, determined by ${ }^{1} \mathrm{H}$ NMR): greenish gray powder; $\mathrm{mp} 198-200^{\circ} \mathrm{C}$; IR (neat) $1627\left(\mathrm{CH}_{2} \mathrm{OC}=\mathrm{C}\right.$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (major isomer 3a) $4.70(\mathrm{dd}, J=12.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=12.6,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 3 \mathrm{H})$, $7.11-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.58-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.63-$ $7.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (minor isomer 4a) $4.57-4.61(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.50(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.69$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major isomer 3a) 61.3, 73.3, 96.6, 102.8, 109.1, 120.19, 120.20, 121.7, 125.5 (2C), 126.5 (2C), 127.7, 128.2 (2C), 128.3, 128.5, 128.6 (2C), 136.0, 136.6, 138.1, 138.4, $153.4 ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (minor isomer 4a) $55.3,70.6,97.7,105.5,109.6,120.8$ (2C), 122.2 (2C), 126.1 (2C), 127.8, 128.2 (2C), 128.3, 128.46, 128.47, 128.7, 128.9, 130.6, 135.7, 135.9, 138.1, 144.7; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}\left(\mathrm{MH}^{+}\right)$ 338.1545, found 338.1550 .
(\pm)-(4R,5S)-2,4,5-Triphenyl-4,5-dihydro[1,4]oxazepino[4,5-a]indole (3b) and (\pm)-(3R,4S)-1-[(Z)-Benzylidene]-3,4-diphenyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole (4b). By using general procedure $\mathrm{A}, \mathbf{2 b}(41.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ was converted to $\mathbf{3 b} / \mathbf{4 b}(37.9 \mathrm{mg}$, 92%, 29:71 $\mathbf{3 b}: 4 \mathbf{b}$, determined by ${ }^{1} \mathrm{H}$ NMR) by the reaction in the presence of $\mathrm{IPrAuCl}(3.1 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and $\mathrm{AgOTf}(1.3 \mathrm{mg}, 5.0$ $\mu \mathrm{mol})$ in dry $1,2-\operatorname{DCE}(1.0 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 2.5 h . Both products were isolated by PTLC $\left(\mathrm{NH}_{2}\right.$ silica gel) with a $3: 1$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$ solvent. Compound 3 b (less polar isomer): white solid; $\mathrm{mp}>250^{\circ} \mathrm{C}$; IR (neat) $1642(\mathrm{CHOC}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.05-7.12 (m, 5H), 7.15-7.18 (m, 1H), 7.23-7.24 (m, 2H), 7.32$7.36(\mathrm{~m}, 6 \mathrm{H}), 7.59-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 67.5,83.4,97.2,103.0,109.2,120.19,120.24$, $121.8,125.7$ (2C), 126.6 (2C), 127.71 (2C), 127.73, 127.9, 128.0, 128.25 (2C), 128.34 (2C), 128.4 (2C), 128.6, 135.7, 135.9, 136.4, 138.1, 138.4, 152.7; HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{MH}^{+}\right)$ 414.1852, found 414.1861 . Compound $\mathbf{4 b}$ (more polar isomer): pale yellow solid; mp $168-172{ }^{\circ} \mathrm{C}$; IR (neat) $1632\left(\mathrm{CH}_{2} \mathrm{OC}=\mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54-5.55(\mathrm{brm}, 1 \mathrm{H}), 5.76-5.77$ (br m, $1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.70-6.70(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-$ $7.05(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.65-7.67(\mathrm{~m}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 60.9$, 80.3, 97.5, 105.8, 109.1, 120.82, 120.84, 122.3, 126.1, 126.5 (2C), 127.88 (2C), 127.89 (2C), 128.0, 128.17 (2C), 128.22, 128.35 (2C), 128.38, 128.8 (2C), 130.3, 134.8, 135.6, 135.7, 136.2, 144.9; HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{MH}^{+}\right) 414.1852$, found 414.1859.

5-Phenyl-2-propyl[1,4]oxazepino[4,5-a]indol-4(5H)-one (3c) and (Z)-1-Butylidene-4-phenyl-1 H-[1,4]oxazino[4,3-a]indol-3(4H)-one (4c). By using general procedure A, 2c $(31.7 \mathrm{mg}, 0.10 \mathrm{mmol})$ was converted to $3 \mathbf{c} / 4 \mathrm{c}$ ($11.1 \mathrm{mg},<35 \%, 20: 803 \mathrm{c}: 4 \mathrm{c}$, determined by ${ }^{1} \mathrm{H}$ NMR) by the reaction in the presence of $\operatorname{IPrAuCl}(3.1 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and $\operatorname{AgOTf}(1.3 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ in dry 1,2-DCE $(1.0 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 3 h . The products were separated by PTLC $\left(\mathrm{NH}_{2}\right.$ silica gel) with a $3: 1$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$ solvent. Compound 3c (less polar isomer): unstable pale amber oil; IR (neat) $1749(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.43(\mathrm{~m}, 1 \mathrm{H})$, $1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.17(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, 6.67-6.69 (m, 2H), $6.76(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 13.0, 19.9, 37.0, 62.9, 102.3, 102.9, 108.7, 120.8, 121.1, 122.6, 124.6 (2C), 128.5, 128.9 (3C), 132.3, 133.0, 136.9, 149.0, 164.2; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right) 318.1489$, found 318.1484. Compound 4c (more polar isomer): unstable yellow oil; IR (neat)
$1760(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.47-1.51(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.41(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.24(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 13.7,22.4,26.6,59.2,97.5,109.7,112.4,121.0,121.4,122.8$, 126.1 (2C), 127.1, 129.0, 129.1, 129.2 (2C), 134.65, 134.74, 139.5, 163.1; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right) 318.1489$, found 318.1484.
(Z)-N-(But-2-yn-1-yl)-4-methyl-N-[3-(3-oxo-4-phenyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-ylidene)propyl]benzenesulfonamide (20b). A screw-cap test tube was charged with (\pm)-10b ($52.5 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathrm{IPrAuCl}(6.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, and AgOTf ($2.6 \mathrm{mg}, 0.01$ $\mathrm{mmol})$. Dry $1,2-\mathrm{DCE}(1 \mathrm{~mL})$ was added to the screw-cap test tube. After being stirred at $50^{\circ} \mathrm{C}$ for 27 h , the mixture was concentrated in vacuo and chromatographed on NH_{2} silica gel ($3: 1$ hexane: CHCl_{3}) to afford 20b/20b' ${ }^{\prime} 16.3 \mathrm{mg},<31 \%, 90: 10 \mathbf{2 0 b}: 20 \mathbf{b}^{\prime}$, determined by ${ }^{1} \mathrm{H}$ NMR) as an isomeric mixture of unstable compounds. Major isomer 20b was isolated by PTLC (silica gel) with a $3: 1$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$ solvent: unstable yellow oil; IR (neat) 2225 ($\mathrm{C} \equiv \mathrm{C}$), 1765 ($\mathrm{C}=\mathrm{O}$), 1345 ($\mathrm{S}=$ O), $1157(\mathrm{~S}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.65(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.99-4.10$ $(\mathrm{m}, 2 \mathrm{H}), 5.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.05-$ 7.07 (m, 3H), 7.11-7.17 (m, 2H), 7.27-7.30 (m, 5H), 7.64-7.66 (m, $1 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.2,21.5,23.0$, 36.7, 45.2, 59.2, 71.5, 81.9, 98.5, 107.6, 109.7, 121.3, 121.5, 123.06, 126.13 (2C), 126.4, 127.8 (2C), 128.9, 129.2, 129.27 (2C), 129.31 (2C), 134.65, 134.71, 135.9, 140.9, 143.3, 162.8; HRMS (FAB) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 525.1848$, found 525.1851.

Gold(l)-Catalyzed Cyclization of the Conjugated Enyne (Table 1): (E)-(3-Ethylidene-1-tosylpiperidin-4-yl)(1 H-indol-2-yl)methanone $[(\pm)-9]$. The experiments documented in Table 1 were conducted as follows. 11a ($56.5 \mathrm{mg}, 0.1 \mathrm{mmol}$; 79:21 Z:E) or 11b ($52.3 \mathrm{mg}, 0.1$ mmol, 71:29 Z:E) was treated with JohnPhosAu(MeCN) SbF_{6} (3.9 $\mathrm{mg}, 5.0 \mu \mathrm{~mol})$ or $\mathrm{IPrAuCl}(3.1 \mathrm{mg}, 5.0 / 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%) / \mathrm{AgSbF}_{6}$ $(1.7 \mathrm{mg}, 5.0 \mu \mathrm{~mol} ; 5 \mathrm{~mol} \%)$ in toluene $-d_{8}(0.5 \mathrm{~mL}, 0.2 \mathrm{M})$ at rt in the presence of an additive (1.5 equiv) and mesitylene (1.0 equiv) as an internal standard. After completion of the reaction (monitored by TLC), the reaction mixtures were analyzed by ${ }^{1} \mathrm{H}$ NMR to determine the yields of $(\pm)-9,28$, and 29 based on the internal standard. Pure $(\pm)-9$ was obtained as follows. A screw-cap test tube was charged with 11a ($293 \mathrm{mg}, 0.52 \mathrm{mmol}, 93: 7 \mathrm{Z}: E$) and JohnPhosAu(MeCN) SbF_{6} $(20 \mathrm{mg}, 25.9 \mu \mathrm{~mol}) . \mathrm{H}_{2} \mathrm{O}(14 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$ and dry toluene (2.6 mL) were added to the mixture. After being stirred at rt for 24 h , the mixture was concentrated in vacuo and chromatographed on NH_{2} silica gel ($5: 1$ hexane:EtOAc). The product was recrystallized from CHCl_{3} and hexane to afford $(\pm)-9(64.1 \mathrm{mg}, 30 \%)$ as a white solid: mp 183$186^{\circ} \mathrm{C}$; IR (neat) 3343 (NH), 1643 ($\mathrm{C}=\mathrm{O}$), 1341 ($\mathrm{S}=\mathrm{O}$), 1162 $(\mathrm{S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.86$ (ddd, $J=12.2,12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.45(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.71-3.74(\mathrm{br} \mathrm{m}$, $1 \mathrm{H}), 4.09-4.11(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.43-4.43(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.72(\mathrm{q}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.36(\mathrm{~m}$, 4 H), 7.66 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{br} \mathrm{s}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.3,21.6,28.5,41.2,43.2,52.3$, 109.4, 112.0, 121.2, 123.2, 124.8, 126.7, 127.4, 127.7 (2C), 129.7 (2C), 129.9, 133.5, 133.8, 137.3, 143.5, 192.6; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 409.1586$, found 409.1577.
(Z)-N-\{4-(1H-Indol-2-yl)-4-[(triisopropylsilyl)oxy]but-3-en-1-yl\}-N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (28). Amber oil: IR (neat) $3386(\mathrm{NH}), 2225(\mathrm{C} \equiv \mathrm{C}), 1650(\mathrm{SiOC}=\mathrm{C}), 1341(\mathrm{~S}=\mathrm{O})$, $1157(\mathrm{~S}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $18 \mathrm{H}), 1.18-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.54$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.13(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.54(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 7.08-7.10(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.3,13.6$ (3C), 17.9 (6C), 21.5, 24.5, 36.8, $45.8,71.8,81.5,100.1,106.4,110.8,119.9,120.6,122.2,127.8$ (2C), 128.5, 129.2 (2C), 135.7, 136.0, 136.7, 143.2, 144.8; HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+}\right) 565.2920$, found 565.2927 .

N-(But-2-yn-1-yl)-N-[4-(1H-indol-2-yl)-4-oxobutyl]-4-methylbenzenesulfonamide (29). White powder: mp $120-121^{\circ} \mathrm{C}$; IR (neat) 3326 (NH), 2224 ($\mathrm{C} \equiv \mathrm{C}$), 1649 ($\mathrm{C}=\mathrm{O}$), 1340 ($\mathrm{S}=\mathrm{O}$), 1157 ($\mathrm{S}=$ $\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.01-$ $2.07(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.08-4.08(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 7.15-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 3 \mathrm{H})$, 9.01 (br s. 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.2,21.4,22.0,34.9$, 36.9, 45.8, 71.7, 81.7, 109.4, 112.1, 120.9, 123.1, 126.3, 127.6, 127.8 (2C), 129.3 (2C), 134.9, 135.9, 137.1, 143.3, 192.2; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$409.1586, found 409.1590.

Enantioselective Cyclization of Conjugated Enyne (Table 2): Synthesis of (S,E)-(3-Ethylidene-1-tosylpiperidin-4-yl)(1H-indol-2yl)methanone $[(S)-9]$. (R)-MeO-DTBM-BIPHEP $(\mathrm{AuCl})_{2}(8.1 \mathrm{mg}$, $5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and $\mathrm{AgSbF}_{6}(3.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were dissolved in toluene $(0.1 \mathrm{~mL})$ and stirred for 10 min at rt . A solution of $(Z)-11 \mathbf{a}(56.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(0.4 \mathrm{~mL})$ was transferred to the catalyst mixture. The mixture was stirred at rt for 17 h . The mixture was concentrated and purified on PTLC (silica gel) with a $3: 1$ hexane/EtOAc solvent to afford (S)-9 as a white amorphous solid $\{13.1 \mathrm{mg}, 32 \%$ yield, 88% ee [HPLC, Chiralcel-OD-H column eluting under condition with $40 \% i$-PrOH $/ n$-hexane at $0.75 \mathrm{~mL} / \mathrm{min}, t_{1}=$ 12.66 min (major isomer), $t_{2}=16.60 \mathrm{~min}$ (minor isomer) $\left.]\right\}:[\alpha]^{26}{ }_{\mathrm{D}}-$ 2.1 (c 0.92, CHCl_{3}); IR (neat) 3334 (NH), 1641 (C=O), 1341 ($\mathrm{S}=$ $\mathrm{O}), 1159(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71(\mathrm{dd}, J=6.9$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.03-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, 2.88 (ddd, $J=12.3,12.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47-3.49 (br m, 1H), 3.71$3.74(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.10-4.13(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.43-4.44(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.71$ $(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.3,21.5,28.5,41.1,43.2,52.3,109.5,112.1$, 121.2, 123.1, 124.7, 126.7, 127.4, 127.7 (2C), 129.6 (2C), 129.9, 133.4, 133.8, 137.3, 143.4, 192.7; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $\left(\mathrm{MH}^{+}\right)$409.1586, found 409.1585.
Total Synthesis of (+)-Conolidine (Scheme 6). (S,E)-(3-Ethylidenepiperidin-4-yl)(1H-indol-2-yl)methanone (7). According to the reported method, ${ }^{26}$ removal of the tosyl group was conducted as follows. Sodium ($27.7 \mathrm{mg}, 1.20 \mathrm{mmol}$) was added to a solution of naphthalene ($193 \mathrm{mg}, 1.50 \mathrm{mmol}$) in THF (1.5 mL) at rt and the mixture stirred for 30 min . The resulting dark green/blue solution ($\sim 0.8 \mathrm{M}$ in THF) was added dropwise to a solution of $(S)-9(49.2 \mathrm{mg}$, $0.12 \mathrm{mmol}, 91 \% \mathrm{ee})$ in THF (1.2 mL) at $0{ }^{\circ} \mathrm{C}$ until dark green/blue color persisted. Saturated aqueous NaHCO_{3} was added, and the solution was allowed to warm slowly to rt. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layers were washed with brine, combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and filtered. Concentration under reduced pressure and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane afforded (+)-7 ($18.5 \mathrm{mg}, 60 \%$): mp 205-210 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=+41.0(\mathrm{c}$ $0.26, \mathrm{MeOH}$) [comparable to the report by Micalizio and co-workers ${ }^{2}$ $\left.[\alpha]^{25}{ }_{\mathrm{D}}=+45.0(c 0.24, \mathrm{MeOH})\right]$; IR (neat) $3345(\mathrm{NH}), 1627(\mathrm{C}=$ O); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.87-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.22(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.97-3.00(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, 3.15 (ddd, $J=12.6,12.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ $(\mathrm{s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.54(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.0,31.5,43.0,43.2,53.1,108.9,112.1$, 120.8, 121.0, 123.1, 126.3, 127.6, 134.4, 135.1, 137.1, 193.6; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$255.1497, found 255.1490.
(+)-Conolidine (1). According to Micalizio's procedure, ${ }^{2}$ amine $(+)-7(16.0 \mathrm{mg}, 0.06 \mathrm{mmol})$, paraformaldehyde $(6.8 \mathrm{mg}, 0.23 \mathrm{mmol})$, and TFA $(14.5 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ were dissolved in dry MeCN $(1.2 \mathrm{~mL})$ and the reaction mixture was heated under reflux for 2 h . TFA (14.5 $\mu \mathrm{L}$) was added and the mixture stirred for a further 3 h . The mixture was concentrated in vacuo, and the crude product was made basic with aqueous saturated NaHCO_{3} (to pH 9.0) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The resultant orange solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and chromatographed on NH_{2} silica gel (99:1 $\mathrm{MeOH}: \mathrm{CHCl}_{3}$) to afford (+)-conolidine (1) $\{5.7 \mathrm{mg}, 34 \%, 84 \%$ ee [HPLC, Chiralcel-AD-H column eluting under condition with $80 \% i$ -
PrOH / n-hexane at $0.75 \mathrm{~mL} / \mathrm{min}, t_{1}=14.25 \mathrm{~min}$ (minor isomer), $t_{2}=$ 16.95 min (major isomer) $]\}: \mathrm{mp} 178-180^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{28}=+31.5(c 0.24$, CHCl_{3}) [comparable to the reports by Kam et al., ${ }^{1}[\alpha]_{\mathrm{D}}=+32.0(c$ $0.16, \mathrm{CHCl}_{3}$), and Micalizio and co-workers, ${ }^{2}[\alpha]_{\mathrm{D}}^{27}=+28.1$ (c0.16, $\left.\mathrm{CHCl}_{3}\right)$]; IR (neat) 2914 (NH), $1634(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.51-1.52(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 2.04-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.18(\mathrm{~m}$, $1 \mathrm{H}), 3.06-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.33(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.41$ (ddd, $J=13.7$, $8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85-3.88 (br m, 1H), 3.97-3.98 (br m, 1H), 4.29 $(\mathrm{d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11$ (ddd, $J=16.0,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.57$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 12.7, 22.9, 44.2, 48.1, 53.3, 55.0, 111.7, 120.1, 120.5, 120.8, 122.9, 126.5, 127.9, 130.1, 133.5, 136.1, 193.5; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$267.1497, found 267.1494.

ASSOCIATED CONTENT

(5) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc. 6 b00720.

Additional synthetic schemes (preparation of $2 \mathbf{a}-\mathbf{c}$), NMR spectra, and HPLC chromatograms (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: hohno@pharm.kyoto-u.ac.jp.
*E-mail: nfujii@pharm.kyoto-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Encouragement of Young Scientists (A) (H.O.) and the Targeted Proteins Research Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan. S.N. is grateful for Research Fellowships from the JSPS for Young Scientists.

REFERENCES

(1) Kam, T.-S.; Pang, H.-S.; Choo, Y.-M.; Komiyama, K. Chem. Biodiversity 2004, 1, 646.
(2) Tarselli, M. A.; Raehal, K. M.; Brasher, A. K.; Streicher, J. M.; Groer, C. E.; Cameron, M. D.; Bohn, L. M.; Micalizio, G. C. Nat. Chem. 2011, 3, 449.
(3) (a) Bennasar, M.-L.; Zulaica, E.; Solé, D.; Alonso, S. Chem. Commun. 2009, 3372. (b) Bennasar, M.-L.; Zulaica, E.; Solé, D.; Roca, T.; García-Díaz, D.; Alonso, S. J. Org. Chem. 2009, 74, 8359. (c) Hirose, T.; Noguchi, Y.; Furuya, Y.; Ishiyama, A.; Iwatsuki, M.; Otoguro, K.; Ōmura, S.; Sunazuka, T. Chem. - Eur. J. 2013, 19, 10741. (4) During the course of this study, a similar approach was recently reported for construction of the ethylidene-piperidine moiety and used to synthesize (\pm)-conolidine and (\pm)-apparicine: Takanashi, N.; Suzuki, K.; Kitajima, M.; Takayama, H. Tetrahedron Lett. 2016, 57, 375.
(5) For recent reviews, see: (a) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. (b) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462. (c) Cera, G.; Bandini, M. Isr. J. Chem. 2013, 53, 848. (d) Nunes dos Santos Comprido, L.; Hashmi, A. S. K. Isr. J. Chem. 2013, 53, 883. (e) Gatineau, D.; Goddard, J.-P.; MourièsMansuy, V.; Fensterbank, L. Isr. J. Chem. 2013, 53, 892. (f) Brand, J. P.; Li, Y.; Waser, J. Isr. J. Chem. 2013, 53, 901.
(6) (a) Gorin, D. J.; Dubé, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. (b) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. (c) Ohno, H. Isr. J. Chem. 2013, 53, 869. (d) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280. (e) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028. (f) Pflästerer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331.
(7) Naoe, S.; Saito, T.; Uchiyama, M.; Oishi, S.; Fujii, F.; Ohno, H. Org. Lett. 2015, 17, 1774.
(8) Gold(I)-catalyzed reactions of alkyne and silyl enol ether have been reported as powerful strategies for the construction of carbocyclic structures. See: (a) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde, R. L.; Toste, F. D. Angew. Chem., Int. Ed. 2006, 45, 5991. (b) Lee, K.; Lee, P. H. Adv. Synth. Catal. 2007, 349, 2092. (c) Minnihan, E. C.; Colletti, S. L.; Toste, F. D.; Shen, H. C. J. Org. Chem. 2007, 72, 6287. (d) Barabé, F.; Bétournay, G.; Bellavance, G.; Barriault, L. Org. Lett. 2009, 11, 4236. (e) Kusama, H.; Karibe, Y.; Onizawa, Y.; Iwasawa, N. Angew. Chem., Int. Ed. 2010, 49, 4269. (f) Barabé, F.; Levesque, P.; Korobkov, I.; Barriault, L. Org. Lett. 2011, 13, 5580. (g) Sow, B.; Bellavance, G.; Barabé, F.; Barriault, F. Beilstein J. Org. Chem. 2011, 7, 1007. (h) Brazeau, J.-F.; Zhang, S.; Colomer, I.; Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 2742. (i) Iwai, T.; Okochi, H.; Ito, H.; Sawamura, M. Angew. Chem., Int. Ed. 2013, 52, 4239.
(9) Teichert, J. F.; Zhang, S.; Zijl, A. W. V.; Slaa, J. W.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2010, 12, 4658.
(10) For a recent review, see: Sindhu, K. S.; Thankachan, A. P.; Sajitha, P. S.; Anilkumar, G. Org. Biomol. Chem. 2015, 13, 6891.
(11) Barbazanges, M.; Augé, M.; Moussa, J.; Amouri, H.; Aubert, C.; Desmarets, C.; Fensterbank, L.; Gandon, V.; Malacria, M.; Ollivier, C. Chem. - Eur. J. 2011, 17, 13789.
(12) The geometries of 11a and 11b were determined according to the literature: (a) Reich, H. J.; Holtan, R. C.; Borkowsky, S. L. J. Org. Chem. 1987, 52, 312. (b) Reich, H. J.; Holtan, R. C.; Bolm, C. J. Am. Chem. Soc. 1990, 112, 5609.
(13) The geometry of $\mathbf{2 8}$ was confirmed by an NOE between the protons at the indole 3-position and vinylic carbon.
(14) Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 3703.
(15) (a) Jagtap, R. S.; Joshi, N. N. Tetrahedron: Asymmetry 2011, 22, 1861. (b) Gunderson, K. G.; Shapiro, M. J.; Doti, R. A.; Skiles, J. W. Tetrahedron: Asymmetry 1999, 10, 3263.
(16) Liu, G.; Li, J.; Qiu, L.; Liu, L.; Xu, G.; Ma, B.; Sun, J. Org. Biomol. Chem. 2013, 11, 5998.
(17) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.
(18) Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638.
(19) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. Org. Lett. 2000, 2, 1729.
(20) Naoe, S.; Suzuki, Y.; Hirano, K.; Inaba, Y.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2012, 77, 4907.
(21) Balaraman, K.; Kesavan, V. Synthesis 2010, 2010, 3461.
(22) Alami, M.; Ferri, F. Tetrahedron Lett. 1996, 37, 2763.
(23) Kinoshita, A.; Sakakibara, N.; Mori, M. Tetrahedron 1999, 55, 8155.
(24) Jervis, P. J.; Kariuki, B. M.; Cox, L. R. Org. Lett. 2006, 8, 4649.
(25) Morita, S.; Otsubo, K.; Matsubara, J.; Ohtani, T.; Uchida, M. Tetrahedron: Asymmetry 1995, 6, 245.
(26) Craig, D.; Goldberg, F. W.; Pett, R. W.; Tholen, N. T. H.; White, A. J. P. Chem. Commun. 2013, 49, 9275.

[^0]: Received: April 4, 2016
 Published: June 8, 2016

